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Operational Definition:

Monitor any beam induced conditions which affect the 
performance, reliability, lifetime of detectors or infrastructure.

Methods adopted at CDF (D0):
• Record/Monitor beam conditions and radiation.

• real time and samples

• Evaluate the radiation field. 
• measurements and simulation

• Modify conditions to reduce risk.
• modify/abort the beam (beam position, tune, collimator positions)

• modify the conditions in the monitored region (shielding)

What is Radiation Monitoring?
If you know the enemy and you know yourself, you need not fear the result of a hundred battles -- 

Sun-Tzu (ca.400 BC)
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Radiation Monitoring at CDF
Initial Goals:

• Measure distribution and rates of radiation

• Provide early estimate of Si tracker lifetime

Secondary Goals:
• Identify/evaluate radiation sources in/near CDF

• Eliminate/reduce failures in electronics 

• Additional instrumentation for the accelerator

Monitoring Technologies:
• Thermal Luminescent Dosimeters (TLDs)

• Silicon PIN diodes

• Ionization chambers

• Silicon detectors

• Scintillation counters

• Other beam monitors



Beam Structure

• 36 1ns bunches in 3x12 bunch trains 
(396ns bunch spacing)

• 2.2μs space between bunch trains

* Monitor losses (in time with beam)

* Monitor beam in abort gaps

> Fast detectors & electronics
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protons pbars
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CDF-II Detector (G-rated)
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Measuring the Radiation Field
Thermal Luminescent Dosimeters (TLDs)
Advantages:

+ passive

+ large dynamic range(10-3-102 Gy)

+ good precision (<1%)

+ absolute calibration

+ γ,n measurements

+ redundancy

Disadvantages:
- harvest to read

- large amount of handling

- non linearity at high doses

- only measure “thermal” neutrons

Good for accurate, low-medium dose evaluation

0

10
20

30

40

50
60

70

80

90

0 5 10 15 20 25 30
TLD-700 response (nC)

σ

mean
= 2.7%

chip-to-chip 
response

L
A
B
E
L

1
.5

9
 c

m

3.18 cm

1.11 cm dia. (H)



Radiation from Collisions
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Radiation from Beam Losses
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Silicon Detector Dose (Damage)
Measure Ibias 

• correct Temp. to 20C

• αdamage=3.0x1017A/cm

Early comparison with TLD 
Data

• Assume r-α scaling

• 1Gy=3.8x109 MIPS/cm2

Temp profile of SVX sensors 
poorly understood. 

Update with full tracker in 
2005.
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Simulated Ionizing Radiation
MARS simulation of CDF

• Collisions simulated by 
DPMJET

• Simulation scaled up 2x 
for plot (check shape)

Missing Material?

• electronics

• cables 

• cooling
+ Qualitative understanding 

of collision dose 
(dominant)

- Losses not understood!

protons antiprotons
L.Nicolas

Collision Component
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Measure Larger Accumulated Doses

PIN Diodes

• Advantages:
+ passive/active

+ in-situ readout 

+ large dynamic range 

(102 - 105Gy)

• Disadvantages:
- Temperature/history 

dependent
- Calibrate in-situ
- active operation needs 

periodic calibration

Vbias = 80 V

D0
 (Active)

23 Oct. 2003R.J. Tesarek "Radation and Damage at CDF" -IEEE/NSS, 

Portland, OR
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Measurement Technique

TLDs: (~1000 dosimeters in 145 locations)

• 2 types of dosimeters
TLD-700 (7LiF):  ionizing radiation

TLD-600 (6LiF):  ionizing radiation & low energy 

neutrons (En<200keV)

• Calibration
1% reproducibility, 3% chip-to-chip variation

Ionizing radiation: 10mGy exposure to 137Cs

Neutrons: 10mGy exposure to 252Cf

PIN Diodes: (12 diodes in 10 locations)

Cross calibrated with TLDs

PIN diodes

Carbon fiber support

1cm

1cm

PIN diode

CDF 
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Monitor Dose to Si Tracker
TLD Data:  Spatial distribution 
of ionizing radiation.

PIN Diodes:  Use increase in 
bias current as scale to get 
delivered dose.

• T corrected to 20 C

• Diodes used passively

• I/V curves taken monthly

• Si dose ~2.1 kGy @ r=3cm

Dose rate and distribution as 
expected.  

Real time monitor desirable
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Diamond in CDF

diamond

diodes

R. Wallny, P. Dong

supplemental real time 
radiation measurement

Status:  Installed 10/04
Leakage current measurement 
<1pA
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Measuring Beam Losses/Halo
Beam Losses all calculated in the same fashion
•  Detector signal in coincidence with beam passing the 

detector plane.

• ACNET variables differ by detector/gating method.

• Gate on bunches and abort gaps.

"Lost Particle"

Proton Bunches

Gate

Detector

CDF

“Halo Particle”

Definitions:
lost particles:  close to beam
halo particles:  far from beam
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Detectors
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Halo Counters Beam Shower Counters

B0PHSM:  beam halo
B0PBSM:   abort gap losses
B0PAGC:  2/4 coincidence abort gap losses

B0PLOS:  proton losses (digital)
LOSTP:    proton losses (analog)
B0MSC3:  abort gap losses (E*W coincidence)

ACNET variables:

active area = 0.9 m2 active area = 77 cm
2
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Beam Monitors
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Recording “Fast” Signals
1 Tevatron revolution

Abort Gap

2.2μs

21μs Diagnose beam problems
Reduce risk of accident!

DC Beam
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Activation Background in Counters

Activated quadrupole steel

• Periods of sustained high 
losses

• Large beam “accident”

• β radiation mostly
- Lose timing info
- Contaminate measurement

Majority 2/4 coincidence

+ Reduces contamination

+ Reduces overall rate
- Insensitive to single 

particles
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New Halo/Loss System in 2005

2 Counter coincidence

• Suppress backgrounds

• Calibrate in situ
Additional Electronics

• Digitize every bunch

• Deep FIFO (record 
several revolutions)

Reconstruct “accidents”

Clock

logic Unitdiscriminator
333 scaler

passive splitters

monitor

Readout

ACNET

counters

ADCs

Readout

ACNET

ADMEM

(Lecroy 4416)

FIFOs

FIFO clock

Beam Permit
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CDF  VME Power Supply Failures
Failure Characteristics

• Position Dependent

• Beam Related

• Catastrophic

• Switching supplies only

• failure rate ~3/week

• 12 supplies failed in 1 day

Failure Locations
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Radiation Source?

• Counter measurements show low beta quadrupoles form a line 
source of charged particles.

• Power supply failure analysis shows largest problem on the west 
(proton) side of the collision hall.

antiprotonsprotons

CDF Detector (R-rated)

N

S
EW

Ip

Ip

≈ 10



Reduces solid angle seen by power supplies by 25%

What do measurements tell us?

22

Radiation Shielding?
Install shielding to reduce radiation from low beta quadrupoles.

CDF Detector w/ additional shielding

N

S
EW

protons antiprotons
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Collision Hall Ionizing Radiation Field

Ri = Dose/

∫
Ldt

K. Kordas, et al.
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Collision Hall Ionizing Radiation Field
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Shielding effectiveness
• Ionizing radiation reduced by 20-30% near affected power supplies

• What about neutrons?
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Neutron Spectrum Measurement

Evaluate Neutron Energy Spectrum 

• Bonner spheres + TLDs

• ~1 week exposures

• Shielding in place
Measuring neutrons is hard!
Work in progress...

Polyethylene “Bonner” spheres

protons antiprotons

Bonner sphere locations
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Neutron Data
Compare data with 252Cf

• spontaneous fission

• ~20 n/decay

• <En> ~2 MeV

Data show average En < 2 MeV

To do:

• understand En distribution

• neutron fluence

Collision hall data
252Cf (calibration)

pre
lim

ina
ry

1 2

34

56

78

W. Schmitt, et al.

0

2

4

N
o
rm

. 
R

e
s
p
.

Position 1 Position 2

0

2

4

N
o
rm

. 
R

e
s
p
.

Position 3 Position 4

0

2

4
N

o
rm

. 
R

e
s
p
.

Position 5 Position 6

0

2

4

0 20 40

Sphere Dia. (cm)

N
o
rm

. 
R

e
s
p
.

Position 7

0 20 40

Sphere Dia. (cm)

Position 8



27

Summary

Multiple techniques to monitor radiation
• TLDs

• Silicon diodes 

• Ionization chambers

• Scintillation counters

• Complimentary and redundant information

New systems to supplement information
• Diamond detector 

• New counters & electronics
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Backup 
Slides
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Typical Store

Quantity
Rate
(kHz)

Limit
(kHz) comment

P Losses 2 - 15 25 chambers trip on over current
Pbar Losses 0.1 - 2.0 25 chambers trip on over current
P Halo 200 - 1000 -
Pbar Halo 2 - 50 -

Abort Gap Losses 2 - 12 15 avoid dirty abort (silicon damage)

L1 Trigger 0.1-0.5 two track trigger (~1 mbarn)

Losses and Halo:

Beam Parameters:
Protons: 5000 - 9000 109 particles
Antiprotons: 100-1500 109 particles
Luminosity: 10 - 100 10

30
cm

−2
s
−1

Duration 10-30 hours

Note:  All number are taken after scraping and HEP is declared. 
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Monitor Experience
“Typical good store”

proton halo

proton losses

proton abort gap

proton beam current
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Beam Collimation
Background reduction at work

proton halo
proton losses

E0 collimator

proton beam current
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Halo Reduction

Vacuum problems identified 
in 2m long straight section 
of Tevatron (F sector)

Improved vacuum (TeV 
wide)

Commissioning of 
collimators to reduce halo

> Physics backgrounds 
reduced by ~40%

C:B0PHSM

T:F1IP1A

PRESSURE

STORE 1207

PROTON HALO

175 mins

R. Moore,  V. Shiltsev,
N.Mokhov,  A. Drozhdin
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Beam Halo Counters

CDF

Protons
Antiprotons

quadrupole

separator

dipole

Roman pots

collimator
CDF
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Run I Shielding

Detector configuration 
different in Run II

• Run I detector “self 
shielded”

• Additional shielding 
abandoned (forward 
muon system de-
scoped).

• Shielding installed 
surrounding beam line.

Evaluation of shielding 
continues

Tevatron Losses and CDF Shield Configuration In Run I

~ 0 Track Chamber. Calorimeter.. Steel. Concrete Shield In Tevatron tunnel

RunllCDF Shielding Design for Run II

~ 0 Track Chamber. Calorimeter. Steel. Concrete Shield In Tevatron tunnel

"Snout" on Toroids
helps . M~on Systems

/
Shield between

beamplpe' and
Muon Systems

Steel between
torolds shields
IMU from beam pipe

Run I Shielding

Tevatron Losses and CDF Shield Configuration In Run I

~ 0 Track Chamber. Calorimeter.. Steel. Concrete Shield In Tevatron tunnel

RunllCDF Shielding Design for Run II

~ 0 Track Chamber. Calorimeter. Steel. Concrete Shield In Tevatron tunnel

"Snout" on Toroids
helps . M~on Systems

/
Shield between

beamplpe' and
Muon Systems

Steel between
torolds shields
IMU from beam pipe

Run II Shielding 
(beginning of run)

concretesteelcalorimeter

concrete
steel
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L.V. Power Supply Failures
Power Factor Corrector 
Circuit

Most failures were 
associated with high beam 
losses or misaligned beam 
pipe

> Power MOSFET Single 
Event Burnout (SEB) 

silicon in MOSFET sublimated
during discharge through single 

component

epoxy covering
fractured
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St Catherine’s Day Massacre

12 switching power supplies 
failed in an 8 hour period.

• only during beam 

• only switching supplies

• failures on detector east 
side

• shielding moved out

• new detector installed

• beam pipe misaligned

Conclusion:  Albedo radiation 
from new detector

switching supplies

linear supplies

protons


